Home
Class 11
MATHS
lim(x rarr-(1)/(2))(2x^(2)-3x+1)/(2x-1)=...

`lim_(x rarr-(1)/(2))(2x^(2)-3x+1)/(2x-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr(1)/(2))(ax^(2)+bx+c)/((2x-1)^(2))=(1)/(2) then lim_(x rarr2)((x-a)(x-b)(x-c))/(x-2) is

Show that lim_(x rarr2)[(1)/(x-2)-(1)/(x^(2)-3x+2)]=

lim_ (x rarr (1) / (2)) ((8x-3) / (2x-1) - (4x ^ (2) +1) / (4x ^ (2) -1))

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr1)((1)/(x^(2)+x-2)-(x)/(x^(3)-1))

lim_(x rarr oo)(2x+1)/(3x-2)

Evaluate: lim_(x rarr 0) (2^(3x)-1)/(3^(2x)-1)

Evaluate the following limits: (i) lim_(x rarr1)(x^(2)+3x+2)/(x^(2)+1)

lim_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]

lim_(x rarr1)(lim)/(x rarr(1)/(2))((cos^(2)x)/(1-sin x))