Home
Class 12
MATHS
If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)...

If `c^(2)=a^(2) +b^(2),` then `4s(s-a)(s-b)(s-c)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If c^(2)=a^(2)+b^(2) , then 4s(s-a)(s-b)(s-c) equals

If c^(2)=a^(2)+b^(2),2s=a+b+c, then 4s(s-a)(s-b)(s-c)

In DeltaABC,c^(2)=a^(2)+b^(2), then 4s (s -a) (s -b) (s -c) =

In triangleABC if c^2=a^2+b^2 then 4s(s-a)(s-b)(s-c)=

In Delta ABC, if c^2=a^2+b^2,2s=a+b+c , then 4s(s-a)(s-b)(s-c) =

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)