Home
Class 12
MATHS
If function f(x)=((sin x)/sinalpha)^(1/...

If function `f(x)=((sin x)/sinalpha)^(1/(x-alpha)` where `alpha != m pi (m in I)` is continuous than

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: sin3 alpha=4sin alpha sin(x+alpha)sin(x-alpha), where alpha!=n pi,n in Z

Solve sin 3alpha=4 sin alpha sin (x+alpha)sin(x-alpha) where alpha=n pi,n in Z .

The number of solutions of the equation sin3 alpha=4sin alpha*sin(x+alpha)*sin(x-alpha) where 0

If sin x^(@)=sinalpha , "then " alpha " is"

Solve: sin3alpha=4sinalpha. Sin(theta+alpha).sin(theta-alpha) where alpha ne n pi, n in I

Solve: sin3alpha=4sinalpha. Sin(theta+alpha).sin(theta-alpha) where alpha ne n pi, n in I

Let [x] denote the greatest integer less than or equal to x. Then the value of alpha for which the function f(x)=[((sin[-x^2])/([-x^2]), x != 0),(alpha,x=0)) is continuous at x = 0 is (A) alpha=0 (B) alpha=sin(-1) (C) alpha=sin(1) (D) alpha=1

Consider the function: f(x)={{:((alphacosx)/(pi-2x),"if "xne(pi)/(2)),(3,"if "x=(pi)/(2)):} Which is continuous at x=(pi)/(2) , where alpha is a constant. What is the value of alpha ?

If g(x) is a differentiable function such that int_(1)^(sinalpha)x^(2)g(x)dx=(sin alpha-1), AA alpha in (0,(pi)/(2)) , then the value of g((1)/(3)) is equal to