Home
Class 14
MATHS
If log2=0. 30103, log3=0. 47712, then th...

If `log2=0. 30103, log3=0. 47712,` then the number of digits in `6^(20)` is a. `15` b. `16` c. `17` d. `18`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log2=0. 30101 ,\ log3=0. 47712 , then the number of digits in 6^(20) is 15 b. 16 c. 17 d. 18

If log3= 0.4771, then find the number of digits in 3^(100)

If log2=0.30103 , then the number of digits in 4^(50) is

If log2=0.301,log3=0.477 , find the number of digits in (108)^(10)

If log2=0.301 and log3=0.477, find the number of integers in 6^(20)

If log2=0.301 and log3=0.477, find the number of integers in 6^(20)

If log2=0.301 and log3=0.477, find the number of integers in 6^(20)

If log2=0.301 and log3=0.477 , find the number of digits in: (3^15xx2^10)

If log_(10)2=0.30103,log_(10)3=0.47712, the number of digits in 3^(12)*2^(6)