Home
Class 11
MATHS
If the tangents at the points Pa n dQ on...

If the tangents at the points `Pa n dQ` on the parabola `y^2=4a x` meet at `T ,a n dS` is its focus, the prove that `S P ,S T ,a n dS Q` are in GP.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the tangents at the points P and Q on the parabola y^2 = 4ax meet at R and S is its focus, prove that SR^2 = SP.SQ .

If the normals at P,Q,R of the parabola y^(2)=4ax meet in O and S be its focus,then prove that.SP.SQ.SR=a.(SO)^(2)

The tangents to the parabola y^(2)=4ax at the vertex V and any point P meet at Q. If S is the focus,then prove that SP.SQ, and SV are in G.

IF the normals to the parabola y^2=4ax at three points P,Q and R meets at A and S be the focus , prove that SP.SQ.SR= a(SA)^2 .

If the tangent at the extrenities of a chord PQ of a parabola intersect at T, then the distances of the focus of the parabola from the points P.T. Q are in

Let tangent PQ and PR are drawn from the point P(-2, 4) to the parabola y^(2)=4x . If S is the focus of the parabola y^(2)=4x , then the value (in units) of RS+SQ is equal to

P & Q are the points of contact of the tangents drawn from the point T to the parabola y^(2) = 4ax . If PQ be the normal to the parabola at P, prove that TP is bisected by the directrix.