Home
Class 12
MATHS
If x=2a t , y=a t^2 , where a is a const...

If `x=2a t` , `y=a t^2` , where `a` is a constant, then find `(d^2y)/(dx^2)` at `x=1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=2at,y=at^(2), where a is a constant then find (d^(2)y)/(dx^(2)) at x=(1)/(2)

If y=at^2 , x= 2at where a is a constant what is the value of (d^2y)/(dx^2) at x=1/2 ?

If x=t^2 and y=t^3 , find (d^2y)/(dx^2) .

If x=t^2 and y=t^3 , find (d^2y)/(dx^2) .

If t=(x^(4)+cotx), find (d^(2)y)/(dx^(2)) .

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))

x=a sin t and y= a (cos t + log "tan"(t)/(2)) then find (d^(2)y)/(dx^(2)) .

If x=tlogt,y=t^(t)," then "(d^2y)/(dx^(2))=

IF x=t^2+2t,y=t^3-3t , where t is a parameter then show that, (d^2y)/(dx^2)=3/(4(t+1)) .

If x = a sin t and y = a (cos t + log tan (t/2)) , find (d^2y)/(dx^2)