Home
Class 12
MATHS
" Prove that "sin^(-1)(2x sqrt(1-x^(1)))...

" Prove that "sin^(-1)(2x sqrt(1-x^(1)))=2cos^(-1)x,(1)/(2)<=x<=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)(2x.sqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))lexlt1

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

Prove that sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((x+1)/(sqrt(x^(2)+2x+2)))=tan^(-1)(x^(2)+x+1)

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1