Home
Class 12
MATHS
"The Value of the integral "int((1)/(c))...

"The Value of the integral "int_((1)/(c))^(e)|log x|dx" is: "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_((1)/(e))^(e)|log x|dx=

The value of the integral int_(1)^(e ) (log x)^(2)dx is -

The value of the integral int_(0)^(pi)x log sin x dx is

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of integral int_(e^(-1))^(e^2) |(log_e x)/(x)| dx is :

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of integral int_(1)^(e) (log x)^(3)dx , is

The value of the integral int_(e^(-1))^(e^(2)) |(log_(e)x)/(x)|dx is