Home
Class 10
MATHS
2^(2x+3)=65(2^(x)-1)+57...

2^(2x+3)=65(2^(x)-1)+57

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve each of the following equatins : 2^(2x+3)-57=65(2^(x)-1)

Solve each of the following equatins : 2^(2x+3)-57=65(2^(x)-1)

In the equation 2^(2y+3)=65(2^(y)-1)+57 then, solutions are

Solve the equation 2^(2x+3)=65(2^(x)-2)+122

Solve the equation for x5^(2x+1)=6.5^(x)-1

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )

3 ((3x-1) / (2x + 3))-2 ((2x + 3) / (3x-1)) = 5, x! = (1) / (3),-(3) / (2) )