Home
Class 12
MATHS
If x>=y>1 then the maximum value of logx...

If `x>=y>1` then the maximum value of `log_x(x/y)+log_y(y/x)`is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are strictly positive such that x+y =1, then the minimum value of x log x + y log y is

x>0,y>0 and x+y=1. The minimum value of x log x+y log y is

x>0,y>0 and x+y=1. The minimum value of x log x+y log y is

If xgey and ygt1 , then the value of the expression log_(x)(x/y)+log_(y)(y/x) can never be

If xgt0,ygt0 and x+y=1, then find the minimum value of x log x + y log y.

If log_y x +log_x y=7, then the value of (log_y x)^2+(log_x y)^2, is

If x , y and z be greater than 1, then the value of |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}| =

Suppose x,y,z>1 then least value of log(xyz)[(log x)/(log y log z)+(log y)/(log x log z)+(log z)/(log x log y)]

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is