Home
Class 12
MATHS
Given that 1/log7 2 +1/log9 4= x, then ...

Given that `1/log_7 2 +1/log_9 4= x`, then which of the following will divide `(4)^x?`

Promotional Banner

Similar Questions

Explore conceptually related problems

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

If 1, log_9(3^(1-x)+2) and log_3(4.3^x-1) are in AP , then x is equal to

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=

Find x, if : (i) log_(3) x = 0 (ii) log_(x) 2 = -1 (iii) log_(9) 243 = x (iv) log_(5) (x - 7) = 1 (v) log_(4) 32 = x - 4 (vi) log_(7) (2x^(2) - 1) = 2

If 1,log_9(3^(1-x)+2), log_3(4*3^x-1) are in A.P then x equals to

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))