Home
Class 11
MATHS
The range of the function f(x)=|x-1| is ...

The range of the function `f(x)=|x-1|` is `a. (-oo,0)` b. `[0,oo)` c. `(0,oo)` d. `R`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of the function f(x)="log"|x| is R b. (-oo,0) c. (0,oo) d. R-{0}

The domain of definition of the function f(x)="log"|x| is a. R b. (-oo,0) c. (0,oo) d. R-{0}

The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is (a) (-oo,oo) (b) [0,1] (-1,0] (d) (-1,1)

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (A) (-oo,oo) (B) (0,oo (C) (-oo,""0) (D) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The set of points where the function f(x)=x|x| is differentiable is (-oo,oo) (b) (-oo,0)uu(0,oo) (0,oo) (d) [0,oo)

The set of points where the function f(x)=x|x| is differentiable is (-oo,oo)(b)(-oo,0)uu(0,oo)(0,oo)(d)[0,oo)