Home
Class 12
MATHS
cos^(2)(C)/(2)+c cos^(2)(B)/(2)=(1)/(2)(...

cos^(2)(C)/(2)+c cos^(2)(B)/(2)=(1)/(2)(a+b+c)

Promotional Banner

Similar Questions

Explore conceptually related problems

In any Delta ABC, prove the following: (a+b+c)(cos A+cos B+cos C)=2((a cos^(2))(1)/(2)(A+b cos^(2))(1)/(2)(B+cos^(2))(1)/(2)C)

In a triangle ABC if (sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))cos((A)/(2))cos((B)/(2))cos((C)/(2)) then lambda equals

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

If A+B+C=pi then prove cos( (A)/2) cos( (B-C)/2) + cos( B/2) cos((C-A)/2) + cos( C/2) cos( (A-B)/2) = sinA +sinB+sinC

In any triangle ABC, prove that following: (cos^(2)B-cos^(2)C)/(b+c)+(cos^(2)C-cos^(2)A)/(c+a)+(cos^(2)A-cos^(2)B)/(a+b)=0

(b^(2)-c^(2))/(a)cos A+(c^(2)-a^(2))/(b)cos B+(a^(2)-b^(2))/(c)cos C=0

a(cos C-cos B)=2(b-c)cos^(2)(A)/(2)