Home
Class 12
MATHS
If f(x) is continuous at x=2, where f(x...

If `f(x)` is continuous at `x=2`, where `f(x)=((x^(2)-x-2)^(20))/((x^(3)-12x+16)^(10))`, for `x!=2`, then `f(2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=-2 , where f(x)=(2)/(x+2)+(1)/(x^(2)-2x+4)-(24)/(x^(3)+8) , for x!= -2 , then f(-2)=

If f(x) is continuous at x=1 , where f(x)=((x+3x^(2)+5x^(3)+...+(2n-1)x^(n)-n^(2))/(x-1)) , for x !=1 , then f(1)=

If f(x) is continuous at x=2a , where f(x)=(sqrt(x)-sqrt(2a)+sqrt(x-2a))/(sqrt(x^(2)-4a^(2))) , for x!=2a , then f(2a)=

If f(x) is continuous at x=3, where f(x)=(x^(2)-7x+12)/(x^(2)-5x+6),for x≠3, then f(3)=

If f(x) is continuous at x=2 , where f(x)={:{((x^(2)-(a+2)x+a)/(x-2)", for " x!=2),(2", for " x=2):} , then a=

If f(x) is continuous at x=pi/2 , where f(x)=(3^(x- pi/2)-6^(x- pi/2))/(cos x) , for x != pi/2 , then f(pi/2)=

If f(x) is continuous at x=3 , where f(x)=(x^(2)-7x+12)/(x^(2)-5x+6) ,for x!=3 , then f(3)=

If f(x) is continuous at x=sqrt(2) , where f(x)=(sqrt(3+2x)-(sqrt(2)+1))/(x^(2)-2) , for x!= sqrt(2) , then f(sqrt(2))=

If f(x) is continuous at x=0 , where f(x)=(e^(x^(2))-cosx)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=