Home
Class 12
MATHS
" If "y=e^(x)(sin x+cos x)," prove that ...

" If "y=e^(x)(sin x+cos x)," prove that "(d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)+y cos^(2)x=0

If y=sin(sin x), prove that (d^(2)y)/(dx^(2))+tan x(dy)/(dx)cos^(2)x=0

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If =3e^(2x)+2e^(3x) then prove that (d^(2)y)/(dx^(2))-5(dy)/(dx)+6y=0