Home
Class 10
MATHS
यदि p(x)=x^(5)+4x^(4)-3x^(2)+1 और g(x)=...

यदि `p(x)=x^(5)+4x^(4)-3x^(2)+1` और `g(x)=x^(2)+2`, तो `p(x)` को `g(x)` से भाग दीजिए तथा भागफल `q(x)` और शेषफल `r(x)` ज्ञात कीजिए ।

Promotional Banner

Similar Questions

Explore conceptually related problems

If p(x)=x^(5)+4x^(4)-3x^(2)+1 " and" g(x)=x^(2)+2 , then divide p(x) by g(x) and find quotient q(x) and remainder r(x).

If p(x)=x^(5)+4x^(4)-3x^(2)+1 " and" g(x)=x^(2)+2 , then divide p(x) by g(x) and find quotient q(x) and remainder r(x).

Let P(x) = 4x^(2) - 3x + 2x^(3) + 5 and q(x) = x^(2) + 2x + 4 find p ( x) - q(x) .

Divide p(x) by q(x) p(x)=2x^(2)+3x+1,g(x)=x+2

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following : i] p(x) = x^(3) - 3x^(2) + 5x - 3, g(x) = x^(2) - 2 ii] p(x) = x^(4) - 3x^(2) + 4x + 5, g(x) = x^(2) + 1 - x iii] p (x) = x^(4) - 5 x + 6 g(x) = 2 - x^(2)

If p(x)=x^(3)-5x^(2)+4x-3 andg(x)=x-2 show that p(x) is not a multiple of g(x).

In the polynomial g(x)= x-2, q(x)= x^(2)-x+1 and r(x)= 4 find p(x)

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2 (ii) p(x) = x^4 - 3x^2 + 4x - 5, g(x) = x^2 + 1 - x (iii) p(x) = x^4 - 5x + 6, g(x) = 2 - x^2