Home
Class 12
MATHS
The general solution of the differential...

The general solution of the differential equation `(d^2y)/dx^2=e^(-3x)` is (A) `y=9e^(-3x)+C_1x+C_2` (B) `y=-3e^(-3x)+C_1x+C_2` (C) `y=3e^(-3x)+C_1x+C_2` (D) `y=e^(-3x)/9+C_1x+C_2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the differential equation dy/dx=e^(x-y) is a) e^y+e^x=C b) e^-y+e^-x=C c) e^y-e^x=C d) e^-y-e^-x=C

The solution of the differential eqution (d^(2)y)/(dx^(2)) = e^(-2x) is y = c_(1)e^(-2x) +c_(2)x + c_(3) where c_(1) is

The general solution of the differential equation (dy)/(dx)=e^(x+y) is (A) e^x+e^(-y)=C (B) e^x+e^y=C (C) e^(-x)+e^y=C (D) e^(-x)+e^(-y)=C

The general solution of the differential equation (dy)/(dx)=e^(x+y) is (A) e^x+e^(-y)=C (B) e^x+e^y=C (C) e^(-x)+e^y=C (D) e^(-x)+e^(-y)=C

The general solution of the differential equation (dy)/(dx)=e^(x+y) is (A) e^x+e^(-y)=C (B) e^x+e^y=C (C) e^(-x)+e^y=C (D) e^(-x)+e^(-y)=C

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

The solution of the differential equation dy/dx=e^(x-y)+x^2e^(-y) is (A) y=e^x+1/2 x^2+c (B) e^(y-x)=1/3 x^3+c (C) e^y = e^x +1/3 x^3+c (D) none of these

The order of the differential equation y=C_(1)e^(C_(2)+x)+C_(3)e^(C_(4)+x) is

The order of the differential equation y=C_(1)e^(c_(2)+x)+C_(3)e^(c_(4)+x is

The general solution of the differential equation y dx+(x+2y^2)dy=0 is a) x y+y^2=c b) 3x y+y^2=c c) x y+2y^3=c d) 3x y+2y^3=c