Home
Class 10
MATHS
Prove that : (sinalpha+cosalpha)(tanal...

Prove that : `(sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosecα"`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosec"alpha

(sinalpha + cosalpha)(tanalpha + cotalpha) = secalpha + cosecalpha

(sinalpha + cosalpha)(tanalpha + cotalpha) = secalpha + cosecalpha

Prove that (1-cosalpha)/sinalpha=tan(alpha/2)

If 0ltalphaltpi/2 and sinalpha+cosalpha+tanalpha+cotalpha+secalpha+cosecalpha="7, then prove that sin2alpha is a root of the equation x^2-44x-36=0.

If 0ltalphaltpi/2 and sinalpha+cosalpha+tanalpha+cotalpha+secalpha+cosecalpha="7, then prove that sin2alpha is a root of the equation x^2-44x-36=0.

Prove the following identities: sinalpha cosalpha(tanalpha-cotalpha)=2sin^2alpha-1

If 0ltalphaltpi/2 and sinalpha+cosbeta+tanalpha+cotalpha+secalpha+cosecalpha="7, then prove that sin2alpha is a root of the equation x^2-44x+36=0.

prove that, |{:(0,cosalpha,-sinalpha),(sinalpha,0,cosalpha),(cosalpha,sinalpha,0):}|^2=|{:(" "1,x,-x),(" "x,1," "x),(-x,x," "1):}| where x= sinalpha cosalpha

Prove the following (i)sinA*cosA(tanA+cotA)=1 (ii)Sinalpha*cosalpha(tanalpha-cotalpha)=2Sin^2alpha-1