Home
Class 12
MATHS
" 8.Find "x" if "sin^(-1)(tan(pi)/(4))-s...

" 8.Find "x" if "sin^(-1)(tan(pi)/(4))-sin^(-1)(sqrt((3)/(x)))=(pi)/(6)

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the equation sin^(-1)((tan)(pi)/(4))-sin^(-1)(sqrt((3)/(x)))-(pi)/(6)=0

sin^(-1)[tan""(pi)/(4)]-sin^(-1)[sqrt((3)/(x))]=(pi)/(6). Then x is a root of the equation

sin ^(-1)sqrt(3)x+sin ^(-1)x=(pi)/(2)

Find the values of sin{(pi)/(6)-sin^(-1)(-(sqrt(3))/(2))}

If sin^(-1)(tan(pi/4))-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x is equal to

If sin^(-1)(tan(pi)/4)-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x is equal to

The solution of the equation sin^-1((tan)pi/4)-sin^-1(sqrt(3/x))-pi/6=0 is

If sin^(-1)(tan pi//4)-sin^(-1)(sqrt(3//x))-pi//6=0 , then x is a root of the equation

Solve the following equation for x. sin^(-1)(6x)+sin^(-1) (6sqrt(3)x)= -(pi)/(2) .