Home
Class 12
cos^(1)(63)/(65)+2tan^(1)(1)/(5)=sin(3)/...

cos^(1)(63)/(65)+2tan^(1)(1)/(5)=sin(3)/(5)

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)((63)/(65))+2tan^(-1)((1)/(5))=sin^(-1)(3/5)

cos^(-1) (63/65) + 2tan^(-1) (1/5)= sin^(1) (_______).

Sin^(-1)(16/65)+2Tan^(-1)(1/5)=

Prove that: "cos"^(-1)63/65+2"tan"^(-1)1/5="sin"^(-1)3/5

Prove the following results: tan((sin^(-1)(15))/(13)+(cos^(-1)3)/(5))=(63)/(16) (ii) sin((cos^(-1)3)/(5)+(sin^(-1)5)/(13))=(63)/(65)

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65))

Prove that "sin"^(-1)(5)/(13) +"cos"^(-1)(3)/(5) ="tan"^(-1)(63)/(16) .

The value of 3 "tan"^(-1)(1)/(2) + 2 "tan"^(-1)(1)/(5) + "sin"^(-1)(142)/(65sqrt(5)) is :

The value of 3 "tan"^(-1)(1)/(2) + 2 "tan"^(-1)(1)/(5) + "sin"^(-1)(142)/(65sqrt(5)) is :