Home
Class 11
MATHS
If alpha,beta,gamma are lengths of the a...

If `alpha,beta,gamma` are lengths of the altitudes of a triangle `ABC` with area `Delta`, then `Delta^2/R^2(1/alpha^2+1/beta^2+1/gamma^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta , gamma lengths of the altitudes of a triangle ABC, prove that alpha^(-2)+ beta^(-2) + gamma^(-2)=(1)/(Delta)( cot A+ cot B+cotC) , where Delta is the area of the triangle.

If alpha,beta, gamma are the lengths of altitudes of Delta ABC , then alpha^-2+ beta^-2+ gamma^-2 =

If alpha,beta,gamma are the lengths of the altitudes of Delta ABC , then cosA/alpha+cosB/beta+cosC/gamma=

If alpha, beta and gamma are the lengths of altitudes ABC and Delta be its area prove that : (1)/(alpha^(2))+(1)/(beta^(2)) + (1)/(gamma^(2)) = ((cot A + cot B + cot C))/(Delta)

If alpha, beta , gamma are the lengths of the altitudes of Delta ABC , " then " alpha ^(-2) +beta ^(-2) +gamma^(-2) =

IF alpha,beta,gamma are the lengths of the altitudes of Delta ABC , then 1/alpha+1/beta-1/gamma-(2ab)/((a+b+c)Delta)cos^2""C/2=

If alpha,beta,gamma are the lengths of the altitudes of Delta ABC, then (cos A)/(alpha)+(cos B)/(beta)+(cos C)/(gamma)=

If alpha, beta , gamma, delta are the roots of the equation x^4+x^2+1=0 then the equation whose roots are alpha^2, beta^2, gamma^2, delta^2 is

If alpha ,beta, gamma are roots of the cubic equation x^(3)+2x^(2)-x-3=0 then Area of the triangle with vertices (alpha,beta),(beta,gamma),(gamma,alpha) is:

If alpha,beta,gamma,delta are the roots of the equation x^(4)+x^(2)+1=0 then the equation whose roots are alpha^(2),beta^(2),gamma^(2),delta^(2) is