Home
Class 12
MATHS
Solve the simultaneous vector equation o...

Solve the simultaneous vector equation of `vec x and vec y,vecx+vec c xx vec y=vec a,vec y+vec c xx vec x=vec b`, where `vec c != 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given the following simultaneous equation for vectors vec x and vec y , vec x+ vec y= vec a , vec x xx vec y= vec b , vec x . vec a=1 , then vec x= (A) ( vec a+( vec axx vec b))/( vec a^2) (B) ( vec a+( vec axx vec b))/(| vec a|) (C) (( vec a+( vec axx vec b)))/( vec b^2) (D) none of these

Given the following simultaneous equation for vectors vec xa n d vec y , vec x+ vec y= vec a , vec xxx vec y= vec b , vec xdot vec a=1,t h e n vec x= dot ( vec a+( vec axx vec b))/( vec a^2) (B) ( vec a+( vec axx vec b))/(| vec a|) (C) (( vec a+( vec axx vec b)))/( vec b^2) (D) none of these

If any vector vec a xx (vec b xx vec c) + vec b xx (vec c xx vec a) + vec c xx (vec a xx vec b) =

Solve the vector equation in vec(x): vec(x) + vec(x) xx vec(a) = vec(b) .

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

For any three vectors a b,c,show that vec a xx(vec b+vec c)+vec b xx(vec c+vec a)+vec c xx(vec a+vec b)=0

If vec a, vec b, vec c are non coplanar vectors such that, vec b xx vec c = vec a, vec c xx vec a = vec b, vec a xx vec b = vec c , then |vec a + vec b + vec c| =

For any three vectors a b,c, show that vec a xx (vec b +vec c)+vec b xx (vec c +vec a) +vec cxx(vec a + vec b)=0

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)