Home
Class 12
MATHS
tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)(1)/(x...

tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)(1)/(x)=tan^(-1)(1)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

If 3tan^(-1)((1)/(2+sqrt3))-tan^(-1).(1)/(3)=tan^(-1).(1)/(x) , then the value of x is equal to

3(tan^(-1)1)/(2+sqrt(3))-(tan^(-1)1)/(2)=(tan^(-1)1)/(3)

Solve : 3 tan^-1(1/(2+sqrt3)) - tan^-1(1/x) = tan^-1(1/3)

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=

3tan ^(-1) ""(1)/(2+sqrt(3))-tan ^(-1)""(1)/(2)=tan^(-1 )""(1)/(3)

If 3Tan^(-1)(1/(2+sqrt3))-Tan^(-1)(1/x)=Tan^(-1)(1/3) , then x =

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

Solve equation 3"tan"^(-1)1/((2+sqrt3)) - "tan"^(-1) 1/x ="tan"^(-1) 1/3