Home
Class 12
MATHS
If x = tan'(pi)/(18) then 3x^(6) - 27x^...

If `x = tan'(pi)/(18) ` then `3x^(6) - 27x^(4) + 33x^(2)` is equal to -

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)4=4tan^(-l)x, then x^(4)+x^(3)-6x^(2)-x+4 is equal to

If x=tan((11 pi)/(8)), then the value of 4x^(4)-4x^(3)+6x^(2)-4x, is equal to

IF 0 lt x lt (pi)/(2) then tan (pi/4 +x) + tan "(pi/4-x) is equal to

Let f (x) = 7 tan ^(8) x + 7 tan ^(6) x - 3 tan ^(4) x - 3 tan ^(2) x for all x in (-(pi)/(2), (pi)/(2)). Then the correct expression(s) is (are).

If tan x=(3)/(4),pi<=x<(3 pi)/(2), then tan((x)/(2)) is equal to

lim_(x to 3) (x^(3) - x^(2) + 15 x - 9)/(x^(4) - 5x^(3) + 27x - 27) is equal to

Divide 18x^(4) - 27 x^(3) + 6x by 3x.

If x=-3, then x^(3)-x^(2)-x will be equal to -33(b)-27(c)15(d)54