Home
Class 12
MATHS
" The function "y=f(x)" satifying the co...

" The function "y=f(x)" satifying the condition "f(x+1/x)=x^(2)+1/x^(2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The function y=f(x) satisfying the condition f(x+1//x) =x^(3)+1//x^(3) is:

Consider the function y = f(x) satisfying the condition f(x+ 1/x)=x^(2) + (1)/(x^(2))( != 0) . Then the

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0)

The function y=f(x) satisfying the condition f(x+(1)/(x))=x^(3)+(1)/(x^(3)) is

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+1/x^(2)(x!=0) Then the domain of f(x) is R domain of f(x) is R-(-2,2) range of f(x) is [-2,oo] range of f(x) is (2,oo)

Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1/(x^2)(x!=0) . Then the

A function y = f(x) satisfies the condition f(x+(1)/x) =x^(2)+1/(x^2)(x ne 0) then f(x) = ........

If the function f(x) satisfies the condition f(x + 1/x) = x^2 + 1/x^2,x ne 0 then f(x) is

If a function f statisfies the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2)) (x ne 0) then domain of f(x) is