Home
Class 11
MATHS
(p(6-(2x-1))/(3)>=((3x-2)-(2-x))/(5)...

(p(6-(2x-1))/(3)>=((3x-2)-(2-x))/(5)

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-1)/(3)+(2x+5)/(6)=(3x-6)/(9)-(2x-5)/(2)

Add :5x^(2)-(1)/(3)x+(5)/(2),-(1)/(2)x^(2)+(1)/(2)x-(1)/(3) and -2x^(2)+(1)/(5)x-(1)/(6)

Take away: (6)/(5)x^(2)-(4)/(5)x^(3)+(5)/(6)+(3)/(2)x om (x^(3))/(3)-(5)/(2)x^(2)+(3)/(5)x+(1)/(4)

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

((1)/(x-3)-(3)/(x(x^(2)-5x+6)))

Simplify (x-3)/(x^(2)-x-6) + (2x-1)/(2x^(2) + 5x-3) - (2x +5)/(x^(2) + 5x +6)

(x^(2)-5x-6)/(x^(2)+3x+2)

if p=x+1 and (4p-3)/(2)-(3x+2)/(5)=(3)/(2) find x

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)

Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)