Home
Class 11
MATHS
If the line y=3x+c touches the parabola ...

If the line `y=3x+c` touches the parabola `y^2=12 x` at point `P` , then find the equation of the tangent at point `Q` where `P Q` is a focal chord.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line x-y-1=0 intersect the parabola y^(2)=8x at P and Q, then find the point on intersection of tangents P and Q.

If line x-2y-1=0 intersects parabola y^(2)=4x at P and Q, then find the point of intersection of normals at P and Q.

If line x-2y-1=0 intersects parabola y^(2)=4x at P and Q, then find the point of intersection of normals at P and Q.

The straight lines y=+-x intersect the parabola y^(2)=8x in points P and Q, then length of PQ is

If the normal to the parabola y^(2)=12x at the point P(3,6) meets the parabola again at the point Q,then equation of the circle having PQ as a diameter is

If the normal at P(18, 12) to the parabola y^(2)=8x cuts it again at Q, then the equation of the normal at point Q on the parabola y^(2)=8x is

The line 4x -7y + 10 = 0 intersects the parabola y^(2) =4x at the points P and Q. The coordinates of the point of intersection of the tangents drawn at the points P and Q are