Home
Class 12
MATHS
Let f:[0,2] to RR be the function define...

Let `f:[0,2] to RR` be the function defined by `f(x)=(3-sin (2pix)) sin (pi x-(pi)/(4)) - sin (3pi x+(pi)/(4))`
If `alpha,beta in [0,2]` are such that `{x in [0,2]: f(x) ge0}= [alpha, beta]`, then the value of `beta- alpha` is._________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = (3 - \sin(2\pi x)) \sin\left(\pi x - \frac{\pi}{4}\right) - \sin\left(3\pi x + \frac{\pi}{4}\right) \) and find the interval \([ \alpha, \beta ]\) where \( f(x) \geq 0 \). ### Step-by-Step Solution: 1. **Substitution**: Let's set \( \theta = \pi x - \frac{\pi}{4} \). Then, we can express \( x \) in terms of \( \theta \): \[ x = \frac{\theta + \frac{\pi}{4}}{\pi} \] The limits for \( x \) from 0 to 2 correspond to \( \theta \) ranging from \( -\frac{\pi}{4} \) to \( \frac{7\pi}{4} \). 2. **Rewriting the Function**: Substitute \( \theta \) into the function: \[ f(x) = (3 - \sin(2\theta + \frac{\pi}{2})) \sin(\theta) - \sin(3(\frac{\theta + \frac{\pi}{4}}{\pi}) + \frac{\pi}{4}) \] This simplifies to: \[ f(x) = (3 - \cos(2\theta)) \sin(\theta) - \sin(3\theta + \frac{3\pi}{4}) \] 3. **Analyzing \( f(x) \geq 0 \)**: We need to find where \( f(x) \geq 0 \). This means we need to analyze the expression: \[ (3 - \cos(2\theta)) \sin(\theta) - \sin(3\theta + \frac{3\pi}{4}) \geq 0 \] 4. **Finding Critical Points**: The critical points occur when \( \sin(\theta) = 0 \) or when \( 3 - \cos(2\theta) = 0 \). - For \( \sin(\theta) = 0 \): \[ \theta = n\pi \quad (n \in \mathbb{Z}) \] The relevant values in the range \( [-\frac{\pi}{4}, \frac{7\pi}{4}] \) are \( 0, \pi \). - For \( 3 - \cos(2\theta) = 0 \): \[ \cos(2\theta) = 3 \quad \text{(not possible since } \cos \text{ ranges from -1 to 1)} \] 5. **Evaluating \( f(x) \) at Critical Points**: Check the values of \( f(x) \) at the critical points \( \theta = 0 \) and \( \theta = \pi \): - At \( \theta = 0 \): \[ f(0) = (3 - 1)(0) - \sin(\frac{3\pi}{4}) = 0 - \frac{\sqrt{2}}{2} < 0 \] - At \( \theta = \pi \): \[ f(\pi) = (3 - (-1))(0) - \sin(\frac{3\pi}{4}) = 0 - \frac{\sqrt{2}}{2} < 0 \] 6. **Finding Intervals**: We need to check the intervals between these critical points to find where \( f(x) \geq 0 \). By testing values in the intervals: - For \( \theta \) in \( (0, \pi) \), we find that \( f(x) \) is non-negative. 7. **Finding \( \alpha \) and \( \beta \)**: From the analysis, we find: \[ \alpha = \frac{1}{4}, \quad \beta = \frac{5}{4} \] 8. **Calculating \( \beta - \alpha \)**: \[ \beta - \alpha = \frac{5}{4} - \frac{1}{4} = 1 \] ### Final Answer: The value of \( \beta - \alpha \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE ADVANCED

    JEE ADVANCED PREVIOUS YEAR|Exercise MATHS|36 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta in (0, (pi)/(2)), sin alpha = (4)/(5) " and " cos (alpha + beta) = - (12)/(13), then the value of sin beta is

If 2 sin 2alpha=tan beta,alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

Let alpha, betain(0,pi/2),3sin(alpha+beta)=2sin(alpha-beta) and tanalpha=ktanbeta then the value of k is

Ifsin^(4)alpha+cos^(4)beta+2=4sin alpha cos beta,0<=alpha,beta<=(pi)/(2) then find the value of (sin alpha+cos beta)

Let f(x) be a differentiable function and f(alpha)=f(beta)=0(alpha