Home
Class 12
MATHS
In a triangle PQR, "let: aveca= vecQR= v...

In a triangle `PQR, "let: aveca= vecQR= vecb= vecRP and vec c= vecPQ`. ,
If `|veca|=3, |vecb|=4 and (veca. (vec c. vecb))/(vec. (veca- vecb))=(|veca|)/(|veca|+|vecb|)` then the value of `|vecaxx vecb|^(2)` is _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given vectors in the triangle \( PQR \): 1. **Define the vectors**: - Let \( \vec{a} = \vec{RP} \) - Let \( \vec{b} = \vec{QR} \) - Let \( \vec{c} = \vec{PQ} \) We know that: - \( |\vec{a}| = 3 \) - \( |\vec{b}| = 4 \) 2. **Use the given equation**: The problem states: \[ \frac{\vec{a} \cdot (\vec{c} - \vec{b})}{\vec{c} \cdot (\vec{a} - \vec{b})} = \frac{|\vec{a}|}{|\vec{a}| + |\vec{b}|} \] Substituting the magnitudes: \[ \frac{\vec{a} \cdot (\vec{c} - \vec{b})}{\vec{c} \cdot (\vec{a} - \vec{b})} = \frac{3}{3 + 4} = \frac{3}{7} \] 3. **Express \( \vec{c} \)**: From the triangle property, we know: \[ \vec{a} + \vec{b} + \vec{c} = 0 \implies \vec{c} = -(\vec{a} + \vec{b}) \] 4. **Substitute \( \vec{c} \)**: Substitute \( \vec{c} \) into the equation: \[ \vec{a} \cdot (-\vec{a}) = -|\vec{a}|^2 = -9 \] \[ \vec{c} \cdot (\vec{a} - \vec{b}) = -(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = -(\vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b}) = -(|\vec{a}|^2 - \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{b} - |\vec{b}|^2) \] This simplifies to: \[ -(|\vec{a}|^2 - |\vec{b}|^2) = -9 + 16 = 7 \] 5. **Set up the equation**: Now we have: \[ \frac{-9}{7} = \frac{3}{7} \] This is consistent with our earlier substitution. 6. **Find \( |\vec{a} \times \vec{b}|^2 \)**: We know from the properties of vectors: \[ |\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2 \] We already have: - \( |\vec{a}|^2 = 9 \) - \( |\vec{b}|^2 = 16 \) - \( \vec{a} \cdot \vec{b} = -6 \) (as derived from previous steps) Thus: \[ |\vec{a} \times \vec{b}|^2 + (-6)^2 = 9 \times 16 \] \[ |\vec{a} \times \vec{b}|^2 + 36 = 144 \] \[ |\vec{a} \times \vec{b}|^2 = 144 - 36 = 108 \] 7. **Final answer**: The value of \( |\vec{a} \times \vec{b}|^2 \) is \( \boxed{108} \).
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE ADVANCED

    JEE ADVANCED PREVIOUS YEAR|Exercise MATHS|36 Videos

Similar Questions

Explore conceptually related problems

Find vecA*vecB if |vecA|= 2, |vecB|= 5, and |vecAxx vecB|=8

If |veca|=2, |vecb|=5 and veca*vecb=0 , then veca xx (vecaxx(vecaxx(vecaxx(vecaxx(veca xx vecb))))) is equal to :

For any two vectors vec a\ a n d\ vec b prove that | vec axx vec b|^2=| (veca. veca , veca. vecb),(vecb.veca ,vecb.vecb)|

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

If vec a+ vecb +vec c=0 then find veca.vecb+ vecb.vec c+ vec c.veca if |veca| =3, |vecb|=4 and |vec c|=2

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2) = |(veca.veca)/(veca. vecb)(veca.vecb)/(vecb.vecb)|