Home
Class 12
MATHS
Let a denote the base of the natural lo...

Let a denote the base of the natural loganthim. The value of real number a for which the right hand limit
`lim_(x to )((1-x)^(1//x)-e^(-1))/(x^(e))` is equal to a nonzer real number is, _____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{(1 - x)^{\frac{1}{x}} - e^{-1}}{x^a} \] where we want to find the value of \(a\) such that this limit is a non-zero real number. ### Step 1: Rewrite the limit We start by rewriting the limit as: \[ \lim_{x \to 0} \frac{(1 - x)^{\frac{1}{x}} - \frac{1}{e}}{x^a} \] ### Step 2: Analyze the expression \((1 - x)^{\frac{1}{x}}\) As \(x\) approaches 0, we can use the fact that: \[ (1 - x)^{\frac{1}{x}} \to e^{-1} \] Thus, both the numerator and denominator approach 0, indicating that we have a \( \frac{0}{0} \) indeterminate form. This allows us to apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator: \[ \lim_{x \to 0} \frac{\frac{d}{dx}((1 - x)^{\frac{1}{x}} - e^{-1})}{\frac{d}{dx}(x^a)} \] The derivative of \(e^{-1}\) is 0 since it is a constant. ### Step 4: Differentiate the numerator Let \(y = (1 - x)^{\frac{1}{x}}\). Taking the natural logarithm: \[ \ln y = \frac{1}{x} \ln(1 - x) \] Differentiating both sides with respect to \(x\): \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}\left(\frac{1}{x} \ln(1 - x)\right) \] Using the product rule: \[ \frac{d}{dx}\left(\frac{1}{x} \ln(1 - x)\right) = -\frac{1}{x^2} \ln(1 - x) + \frac{1}{x(1 - x)} \] Thus, \[ \frac{dy}{dx} = y \left(-\frac{1}{x^2} \ln(1 - x) + \frac{1}{x(1 - x)}\right) \] ### Step 5: Substitute back into the limit Now substituting back into the limit gives: \[ \lim_{x \to 0} \frac{(1 - x)^{\frac{1}{x}} \left(-\frac{1}{x^2} \ln(1 - x) + \frac{1}{x(1 - x)}\right)}{ax^{a-1}} \] ### Step 6: Simplify the limit As \(x \to 0\), we know that: \[ \ln(1 - x) \sim -x \quad \text{(using Taylor expansion)} \] Thus, we can simplify our limit to: \[ \lim_{x \to 0} \frac{e^{-1} \left(-\frac{1}{x^2}(-x) + \frac{1}{x}\right)}{ax^{a-1}} = \lim_{x \to 0} \frac{e^{-1} \left(\frac{1}{x} + \frac{1}{x}\right)}{ax^{a-1}} = \lim_{x \to 0} \frac{2e^{-1}}{ax^{a-2}} \] ### Step 7: Determine conditions for a non-zero limit For the limit to be a non-zero real number, we need \(a - 2 = 0\), which implies: \[ a = 2 \] ### Conclusion Thus, the value of the real number \(a\) for which the limit is equal to a non-zero real number is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE ADVANCED

    JEE ADVANCED PREVIOUS YEAR|Exercise MATHS|36 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1) is equal to

Evaluate the following limits : lim_(x to 1)(e^(-x)-e^(-1))/(x-1)

The value of lim_(xrarr0) ((1+x)^(1//x)-e)/(x) is

Evaluate the following limits : lim_(x to 1)(e^(x)-e^(-x))/(e^(x)+e^(-x))

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

The value of lim_(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal to

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

Evaluate the following limits : lim_(x to 0)(x(e^(2+x)-e^(2)))/(1-cosx)