To solve the problem of the change in edge length of a cubical solid aluminum block submerged in a 5 km deep ocean, we will follow these steps:
### Step 1: Understand the given data
- Bulk modulus of aluminum, \( K = 70 \, \text{GPa} = 70 \times 10^9 \, \text{Pa} \)
- Initial edge length of the cube, \( a = 1 \, \text{m} \)
- Depth of the ocean, \( h = 5000 \, \text{m} \)
- Density of water, \( \rho = 10^3 \, \text{kg/m}^3 \)
- Acceleration due to gravity, \( g = 10 \, \text{m/s}^2 \)
### Step 2: Calculate the change in pressure (\( \Delta P \))
The change in pressure due to the depth of the ocean can be calculated using the hydrostatic pressure formula:
\[
\Delta P = \rho g h
\]
Substituting the values:
\[
\Delta P = (10^3 \, \text{kg/m}^3)(10 \, \text{m/s}^2)(5000 \, \text{m}) = 5 \times 10^7 \, \text{Pa}
\]
### Step 3: Relate change in pressure to change in volume
The bulk modulus is defined as:
\[
K = -\frac{V \Delta P}{\Delta V}
\]
Rearranging gives:
\[
\Delta V = -\frac{V \Delta P}{K}
\]
### Step 4: Calculate the initial volume (\( V \))
The volume of the cube is given by:
\[
V = a^3 = (1 \, \text{m})^3 = 1 \, \text{m}^3
\]
### Step 5: Substitute values to find \( \Delta V \)
Substituting \( V \), \( \Delta P \), and \( K \) into the equation:
\[
\Delta V = -\frac{(1 \, \text{m}^3)(5 \times 10^7 \, \text{Pa})}{70 \times 10^9 \, \text{Pa}}
\]
Calculating this gives:
\[
\Delta V = -\frac{5 \times 10^7}{70 \times 10^9} = -\frac{5}{70} \times 10^{-2} = -\frac{1}{14} \times 10^{-2} \approx -0.0007142857 \, \text{m}^3
\]
### Step 6: Relate change in volume to change in edge length
The change in volume can also be expressed in terms of the change in edge length (\( \Delta a \)):
\[
\Delta V = 3a^2 \Delta a
\]
Substituting \( a = 1 \, \text{m} \):
\[
\Delta V = 3(1^2) \Delta a = 3 \Delta a
\]
### Step 7: Solve for \( \Delta a \)
Equating the two expressions for \( \Delta V \):
\[
3 \Delta a = -0.0007142857
\]
Thus:
\[
\Delta a = -\frac{0.0007142857}{3} \approx -0.0002380952 \, \text{m}
\]
### Step 8: Convert to mm
To convert from meters to millimeters:
\[
\Delta a \approx -0.2380952 \, \text{mm} \approx -0.24 \, \text{mm}
\]
### Final Answer
The change in the edge length of the block is approximately:
\[
\Delta a \approx -0.24 \, \text{mm}
\]