Home
Class 11
MATHS
Show that xcosalpha+ysinalpha=p touches...

Show that `xcosalpha+ysinalpha=p` touches the parabola `y^2=4a x` if `pcosalpha+asin^2alpha=0` and that the point of contact is `(atan^2alpha,-2atanalpha)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the line xcos alpha+ysinalpha=p touches the parabola y^2=4ax if pcosalpha+asin^2alpha=0 and that the point of contact is (atan^2alpha,-2atanalpha) .

Find the condition that the line x cos alpha+y sin alpha=p touches the parabola y^(2)=4ax

Show that the straight line x cos alpha+y sin alpha=p touches the curve xy=a^(2), if p^(2)=4a^(2)cos alpha sin alpha

If the line x cos alpha+y sin alpha=p touches the ellipse x^(2)/a^(2)+(y^(2))/(b^(2))=1 then the point of contact will be

If the line x cos alpha+y sin alpha=p touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 ,then the point of contact will be ((-a^(2)cos alpha)/(p),(-b^(2)sin alpha)/(p)) ((b^(2)cos alpha)/(p),(a^(2)sin alpha)/(p)) ((b^(2)sin alpha)/(p),(a^(2)cos alpha)/(p)) ( (a^(2)cos alpha)/(p),(b^(2)sin alpha)/(p))

If the line x+y=1 touches the parabola y^(2)-y+x=0 ,then the coordinates of the point of contact are:

If the line x+my+am^(2)=0 touches the parabola y^(2)= 4ax then the ponit of contact is

Prove that the circle x^2 + y^2 -6y + 4 = 0 and the parabola y^(2) = x touch. Find the common tangent at the point of contact.

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =