Home
Class 12
MATHS
phi(x)=int(1// x)^(sqrt(x))sin(t^2)dt, t...

`phi(x)=int_(1// x)^(sqrt(x))sin(t^2)dt`, then find the value of `phi^(prime)(1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

phi(x)=int_(1/x)^( sqrt(x))sin(t^(2))dt, then find the value of phi'(1)

if phi(x)=cos x-int_(0)^(x)(x-t)phi(t)dt. Then find the value of phi^(prime,)(x)+phi(x)

If phi(x) = int_(1//x)^(sqrtx) sin(t^2) dt, then phi'(1) is equal to

If phi (x) =int_(1//x)^(sqrt(x)) sin(t^(2))dt then phi ' (1)is equal to

If phi (x) = cos x - int_0^(x) (x-t) phi (t) dt , then the value of phi^('')(x) + phi (x) =

If int_(0)^(x) f(t)dt=x+int_(x)^(1)t f(t)dt , find the value of f(1).

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is