Home
Class 11
MATHS
" 7.If "y=f(x)=(x+2)/(x-1),x,y!=1" then ...

" 7.If "y=f(x)=(x+2)/(x-1),x,y!=1" then "x" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x+2)/(x-1) then f(y) is equal to

If y=f(x)=(2x-1)/(x-2), then f(y)=

If y = (x +2)/( x +1) , y ne 1, then x equals

If f(x)=(2^x+2^-x)/2 , then f(x+y) f(x-y) is equal to:

If y=f(x) =(x+2)/(x-1)(x ne 1,-2) then show that x=f(y)

If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to (a) 1/2{f(2x)+f(2y)} (b) 1/2{f(2x)-f(2y)} (c) 1/4{f(2x)+f(2y)} 1/4{f(2x)-f(2y)}

If f(x)=(2^(x)+2^(-x))/(2), then f(x+y)f(x-y) is equals to (1)/(2){f(2x)+f(2y)}(b)(1)/(2){f(2x)-f(2y)}(c)(1)/(4){f(2x)+f(2y)}(1)/(4){f(2x)-f(2y)}

If y = f(x) = (x+2)/(x-1) , x ne1 , then show that x = f(y) .

If y = f(x) = (x+2)/(x-1) , x ne1 , then show that x = f(y) .