Home
Class 11
MATHS
" (i) "f(x)={[(e^(1/x))/(1+e^(1/x)),x!=0...

" (i) "f(x)={[(e^(1/x))/(1+e^(1/x)),x!=0],[0,,x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 0,x=0 (a)is continuous at x=0 (b)is not continuous at x=0 (c)is not continuous at x=0, but can be made continuous at x=0 (d) none of these

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0, at x=0 ,f(x)=0 a. is continuous at x=0 b. is not continuous at x=0 c. is not continuous at x=0, but can be made continuous at x=0 (d) none of these

If f(x)={(1)/(e^((1)/(x))+1),x!=0,0,x=0 then

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

Discuss the differentiability of: f(x)={[x(e^x-1)/(e^x+1),x!=0],[0,x=0]:} at x=0

If f(x)={(x)/(e^((1)/(x))+1),x!=0 and 0,x=0

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 \ \ \ \ \ \ \ 0,x=0 at x=0