Home
Class 12
MATHS
f(x)=int(0)^(x)(sin t)/(t)dt,x>0...

f(x)=int_(0)^(x)(sin t)/(t)dt,x>0

Promotional Banner

Similar Questions

Explore conceptually related problems

For the function f(x)=int_(0)^(x)(sin t)/(t)dt where x>0

The points of extrema of the function f(x)= int_(0)^(x)(sin t)/(t)dt in the domain x gt 0 are-

Find the derivative with respect to x of the following functions : (a) F(x) = int_(0)^(2x) (sin t)/(t) dt , (b) f(x) = int_(x)^(0) sqrt(1 + t^(4)) dt

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals