Home
Class 12
MATHS
" If "f(x)=xe^(-((1)/(|x|)+(1)/(x)))" fo...

" If "f(x)=xe^(-((1)/(|x|)+(1)/(x)))" for "x!=0" and "f(0)=0" then "f(x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=x*e^(-((1)/(|x|)+(1)/(x))) if x!=0 and f(x)=0 if x=0 then

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x)=x sin ""1/x"for "x ne 0, f(0)=0" then at x"=0, f(x) is