Home
Class 11
MATHS
^(n)C(r)+^(n)C(r1)=...

^(n)C_(r)+^(n)C_(r1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove by combinatorial argument that .^(n+1)C_(r)=^(n)C_(r)+^(n)C_(r-1)

Let n and r be no negative integers suych that r<=n. Then,^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Show that , (.^(n)C_(r)+^(n)C_(r-1))/(.^(n)C_(r-1)+^(n)C_(r-2))=(.^(n+1)p_(r))/(r.^(n+1)p_(r-1))

Find n and r if .^(n)C_(r):^(n)C_(r+1):^(n)C_(r+2)=1:2:3 .

""^(n)C_(r)+^(n)C_(r+1)=^(n+1)C_(x) ,then x=?

If ^(n)C_(r)+^(n)C_(r+1)=^(n+1)C_(x), thenx =rb .r-1 c.n d.r+1

Find n and r if .^(n)P_(r)=.^(n)P_(r+1)and^(n)C_(r)=^(n)C_(r-1) .

f(n)=sum_(r=1)^(n)[r^(2)(*^(n)C_(r)-^(n)C_(r-1))+(2r+1)^(n)C_(r)] then f(30) is

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to