Home
Class 12
MATHS
int0^1(log|1+x|)/(1+x^2)dx=pi/8log2...

`int_0^1(log|1+x|)/(1+x^2)dx=pi/8log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that int_0^1(log(1+x))/(1+x^2)dx=pi/8log2

int_0^1log(1+x)/(1+x^2)dx

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

Show that: overset(1)underset(0)int (log(1+x)/(1+x^2))dx= pi/8 log 2 .

int_(0)^(1)(log(1+x))/(1+x^(2))dx

int_0^1 log((x)/(1-x))dx=0

The value of int_0^1(8log(1+x))/(1+x^2)dx is a. pilog2 b. \ pi/8log2 c. \ pi/2log2 d. log2

Using property of define integrals, prove that : int_(0)^(1) (log(1+x))/(1+x^(2))=(pi)/8log2

The value of int_0^1 (8 log (1 + x))/(1 + x^2) dx is:

The value of int_0^1 (8log(1+x))/(1+x^2) dx is