Home
Class 12
MATHS
If y=int(x^(2))^(x^(3))1/(logt)dt(xgt0),...

If `y=int_(x^(2))^(x^(3))1/(logt)dt(xgt0)`, then find `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=int_(x^(2))^(x^(3))(1)/(logt) dt(where xgt0 ), then find (dy)/(dx) .

Evaluation of definite integrals by subsitiution and properties of its : F(x)=int_(x^(2))^(x^(3))logt.dt(xgt0) then F'(x)= ………….

int(x^(2)-1)/(x^(4)+3x^(2)+1)dx(xgt0) is

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is

If f(x)=int_((1)/(x))^(sqrt(x))cost^(2)dt(xgt0)" then "(df(x))/(dx) is

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If int_(0)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dt, then (dy)/(dx) is