Home
Class 12
MATHS
[( vec axx vec b)xx( vec bxx vec c)( vec...

`[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)]` is equal to (where ` vec a , vec ba n d vec c` are nonzero non-coplanar vector) `[ vec a vec b vec c]^2` b. `[ vec a vec b vec c]^3` c. `[ vec a vec b vec c]^4` d. `[ vec a vec b vec c]`

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

Let lambda = vec a xx (vec b + vec c), vec mu = vec b xx (vec c + vec a) and vec nu = vec c xx (vec a + vec b). Then

vec axx( vec bxx vec c) , vec bxx( vec cxx vec a) and vec cxx( vec axx vec b) are: linearly dependent (b) coplanar vector parallel vectors (d) non coplanar vectors

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a,vec b and vec c are three non-zero vectors,prove that [vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]