Home
Class 10
MATHS
7^(log(343)27) = ....

`7^(log_(343)27)` = ______.

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(27)9=………..

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :

Solve for x, if : log_(x)49 - log_(x)7 + "log"_(x)(1)/(343) + 2 = 0 .

Let a=7^(1/(log_8 sqrt(343))) and b=11^(1/(log_5 sqrt11)), then

((27)/(343))^(2/3)xx((343)/(729))^(2/3)div((2401)/(81))^(3/4) = _____

log_(3)""(1)/(27)=……..

If log_(175)5x=log_(343)7x , then the value of log_(42)(x^(4)-2x^(2)+7) is

If log_(175)5x=log_(343)7x , then the value of log_(42)(x^(4)-2x^(2)+7) is