Home
Class 12
MATHS
If vec a , vec ba n d vec c are non cop...

If ` vec a , vec ba n d vec c` are non coplanar vectors and ` vec axx vec c` is perpendicular to ` vec axx( vec bxx vec c),` then the value of `[axx( vec bxx vec c)]xx vec c` is equal to `[ vec a vec b vec c]` b. `2[ vec a vec b vec c] vec b` c. ` vec0` d. `[ vec a vec b vec c] vec a`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a, vec b and vec c are non-coplanar vector and vec a times vec c is perpendicular to vec a times(vec b times vec c) ,then the value of [vec a times(vec b times vec c)]times vec c is equal to :

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If the vectors vec a, vec b, vec c are coplanar, then the value of | (vec a, vec b, vec c), (vec a * vec a, vec a * vec b, vec a * vec c), (vec b * vec a, vec b * vec b, vecb * vec c) | =

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to