Home
Class 12
MATHS
The position vectors of point A ,B ,a...

The position vectors of point `A ,B ,a n dC` are ` hat i+ hat j+ hat k , hat i+5 hat j- hat ka n d2 hat i+3 hat j+5 hat k ,` respectively. Then greatest angel of triangle `A B C` is `120^0` b. `90^0` c. `cos^(-1)(3//4)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the points whose position vectors are 5 hat i+5 hat k ,\ 2 hat i+ hat j+3 hat k\ a n d-4 hat i+3 hat j- hat k are collinear.

The position vectors of the points A,B,C are 2hat i+hat j-hat k,3hat i-2hat j+hat k and hat i+4hat j-hat k respectively.These pooints Form an isosceles triangle Form a right triangle Are collinear Form a scalene triangle

The position vectors of A, B, C are 2hat(i)+hat(j)-hat(k), 3hat(i)-2hat(j)+hat(k) and hat(i)+4hat(j)-3hat(k) respectively. Show that A, B and C are collinear.

The values of a,for which points A,B,C with position vectors 2hat i-hat j+hat k,hat i-3hat j-5hat k and ahat i3hat j+hat k respectively are the vertices of a right angled triangle with C=(pi)/(2) are

Show that the vectors vec a=3 hat i-2 hat j+ hat k , vec b=3 hat j+5 hat k , vec c=2 hat i+ hat j-4 hat k from a right angled triangle.

Prove that point hat i+2hat j-3hat k,2hat i-hat j+hat k and 2hat i+5hat j-hat k from a triangle in space.

The position vectors of three points A,B anc C (-4hat(i) +2hat(j) -3hat(k)) (hat(i) +3hat(j) -2hat(k)) "and " (-9hat(i) +hat(j) -4hat(k)) respectively . Show that the points A,B and C are collinear.

Let A,B,C be points with position vectors 2hat i-hat j+hat k,hat hat i+2hat j+hat k and 2hat i+hat j+2hat k respectively.Find the shortest distance between point B and plane OAC.

The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), hat(i)-3hat(k) and -hat(i)+5hat(j)+hat(k) respectively, then angle ABC is equal to