Home
Class 12
MATHS
Let vec a , vec b ,a n d vec c be vecto...

Let ` vec a , vec b ,a n d vec c` be vectors forming right-hand traid. Let ` vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c]),a n d vec r=( vec axx vec b)/([ vec a vec b vec c]),dot` If `xuuR^+,` then `x[ vec a vec b vec c]+([ vec p vec q vec r])/x` b. `x^4[ vec a vec b vec c]^2+([ vec p vec q vec r])/(x^2)` has least value `=(3/2)^(2//3)` c. `[ vec p vec q vec r]>0` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vec a,vec b,vec c be any three non-zero non coplanar vectors and vectors vec p=(vec b xx vec c)/(vec a.vec b xx vec c),vec q=(vec c xx vec a)/(vec a.vec b xx vec c) vec r=(vec a xx vec b)/(veca.vec b xx vec c), then [vec p vec q vec r] equals -

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]