Home
Class 12
MATHS
From a point O inside a triangle A B C ,...

From a point `O` inside a triangle `A B C ,` perpendiculars `O D ,O Ea n dOf` are drawn to rthe sides `B C ,C Aa n dA B ,` respecrtively. Prove that the perpendiculars from `A ,B ,a n dC` to the sides `E F ,F Da n dD E` are concurrent.

Promotional Banner

Similar Questions

Explore conceptually related problems

From a point O inside a triangle ABC, perpendiculars OD, OE and OF are drawn to the sides BC, CA and AB, respectively. Prove that the perpendiculars from A, B and C to the sides EF, FD and DE are concurrent

If D ,E ,F are the mid-points of the sides B C ,C Aa n dA B respectively of a triangle A B C , prove by vector method that A r e aof D E F=1/4(a r e aof A B C)dot

In triangle A B C ,poin t sD , Ea n dF are taken on the sides B C ,C Aa n dA B , respectigvely, such that (B D)/(D C)=(C E)/(E A)=(A F)/(F B)=ndot Prove that _(D E F)=(n^2-n+1)/((n+1)^2)_(A B C)dot

In a triangle A B C , let P a n d Q be points on A Ba n dA C respectively such that P Q || B C . Prove that the median A D bisects P Qdot

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

In an equilateral triangle, prove that the centroid and centre of the circum-circle (circum centre) coincide) Given : An equilateral triangle A B C in which D , E a n d F are the mid-points of sides B C , C A a n d A B respectively. To Prove: The centroid and circum centre are coincident. Construction : Draw medians A D , B E a n d C F

In Figure, A B C D is a parallelogram. E\ a n d\ F are the mid-points of the sides A B\ a n d\ C D respectively. Prove that the line segments A F\ a n d\ C E trisect (divide into three equal parts) the diagonal B D .

Let A B C be an isosceles triangle in which A B=A Cdot If D ,\ E ,\ F be the mid-points of the sides B C ,\ C A\ a n d\ A B respectively, show that the segemtn A D\ a n d\ E F bisect each other at right angles.

The diagonals of quadrilateral A B C D , A C a n d B D intersect in Odot Prove that if B O=O D , the triangles A B C a n d A D C are equal in area.

In a A B C ,\ E\ a n d\ F are the mid-points of A C\ a n d\ A B respectively. The altitude A P\ to\ B C intersects F E\ at Qdot Prove that A Q=Q P