Home
Class 12
MATHS
Let vec O A- vec a , hat O B=10 vec a+2...

Let ` vec O A- vec a , hat O B=10 vec a+2 vec ba n d vec O C= vec b ,w h e r eO ,Aa n dC` are non-collinear points. Let `p` denotes the areaof quadrilateral `O A C B ,` and let `q` denote the area of parallelogram with `O Aa n dO C` as adjacent sides. If `p=k q ,` then find`kdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec(OA)=vecas, vec(OB)=10veca+2vecb and vec(OC)=vecb where O A and C are non collinear points. Let p denote the area of the quadrilaterial OABCand q denote the area of the parallelogram with OA and OC as adjacent sides. Then p/q= (A) 2 (B) 6 (C) 1 (D) 1/2|veca+vecb+vecc]

vec OA=vec a,vec OB=10vec a+2vec b, and vec OC=b where O is origin.Let p denote the area of th quadrilateral OABC and q denote the area of teh parallelogram with OA and OC as adjacent sides.Prove that p=6q.

Let overset(to)(OA) = overset(to)(a), overset(to)(OB)= 10overset(to)(a) + 2overset(b) " and " overset(to)(OC)=overset(to)(b) where O,A and C are non-collinear points . Let P denotes the area of the quadrilateral OABC and let q denots the area of the parallelogram with OA and OC as adjacent sides. If p =kq , then h=........

Let vec OA=vec a,vec OB=100vec a+2vec b and vec OC=vec b where O,A,C are non collinear points.Let P denotes the area of the parallelogram with vec O Anad vec OC as adjacent sides and Q denotes the area of the quadrilateral OABC If Q=lambda P Find the value of lambda

If vec a + vec b + vec c = o, prove that vec a xxvec b = vec b xxvec c = vec c xxvec a

Let A( vec a)a n dB( vec b) be points on two skew lines vec r= vec a+lambda vec pa n d vec r= vec b+u vec q and the shortest distance between the skew lines is 1, w h e r e vec pa n d vec q are unit vectors forming adjacent sides of a parallelogram enclosing an area of 1/2 units. If angle betweenA B and the line of shortest distance is 60^0, then A B= a. 1/2 b. 2 c. 1 d. lambda R={10}

Two vectors vec P and vec Q of the same type with tails at a point O are inclined at angle theta . The diagonal of the parallelogram, drawn with vec P and vec Q as adjacent sides, represents their resultant. Then the area of the parallelogram is given by

let vec a=hat i+hat j-hat k and vec b=hat i-hat j-hat k and vec c be a unit vector perpendicular to vec a and coplanarwith vec a and vec b then vec c is