Home
Class 12
MATHS
" If "I(n)=int(sin nx)/(sin x)dx," for "...

" If "I_(n)=int(sin nx)/(sin x)dx," for "n>1," then the value of "I_(n)-I_(n-2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If I_(n)= int(sin nx)/(cos x)dx , then I_(n)=

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

I_(n)=int sin^(n)xdx

If I_(n) = int (sin nx)/(sin x)dx where n gt 1 , then I_(n)-I_(n-2)

If I_(n)=int (cos nx)/(cosx)dx, then I_(n)=