Home
Class 12
MATHS
vec ba n d vec c are non-collinear if ...

` vec ba n d vec c` are non-collinear if ` vec axx( vec bxx vec c)+( vec adot vec b) vec b=(4-2x-sin y) vec b+(x^2-1) vec c` and `( vecc dot vec c) vec a= vec cdot` Then a. `x=1` b. `x=-1` c. `y=(4n+1)pi//2, n in I` d. `y=(2n+1)pi//2, n in I`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a xx (vec b xxvec c) + (vec a * vec b) vec b = (4-2 beta-sin alpha) vec b + (beta ^ (2) -1) vec c and (vec c * vec c) vec a = vec c, vec b being non-collinear then

vec a xx (vec b xxvec c) + (vec a * vec b) vec b = (4-2 beta-sin alpha) vec b + (beta ^ (2) -1) vec c and (vec c * vec c) vec a = vec c, vec b, vec c being non-collinear then

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec b and vec c are two non-collinear vectors such that vec a*(vec b+vec c)=4 and vec a xx(vec b xxvec c)=(x^(2)-2x+6)vec b+(sin y)vec c then the point (x,y) lies on

If | vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4 , find vec bdot

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

Vectors vec a and vec b are non-collinear.Find for what value of n vectors vec c=(n-2)vec a+vec b and vec d=(2n+1)vec a-vec b are collinear?

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If | vec a|=10 ,\ | vec b|=2\ a n d\ | vec axx vec b|=16 find vec adot vec bdot