Home
Class 12
MATHS
If vec a| vec b , then vector vec v in...

If ` vec a_|_ vec b ,` then vector ` vec v` in terms of ` vec aa n d vec b` satisfying the equation s ` vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1` is ` vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2)` b. ` vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2)` c. ` vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a perpvec b, then vector vec v in terms of vec a and vec b satisfying the equations vec v*vec a=0 and vec v*vec b=1 and [vec vvec avec b]=1 is

The vector component of vec b perpendicular to vec a is ( vec bdot vec c) vec a b. ( vec axx( vec bxx vec a))/(| vec a|^2) c. vec axx( vec bxx vec a) d. none of these

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

For any two vectors vec aa n d vec b , prove that | vec a+ vec b|lt=| vec a|+| vec b| (ii) | vec a- vec b|lt=| vec a|+| vec b| (iii) | vec a- vec b|geq| vec a|-| vec b|

Distance of the point P( vec p) from the line vec r= vec a+lambda vec b is a. |( vec a- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| b. |( vec b- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| c. |( vec a- vec p)+((( vec p- vec b)dot vec b) vec b)/(| vec b|^2)| d. none of these

If | vec a|=2,| vec b|=5a n d vec adot vec b=0, then vec ax( vec ax( vec ax( vec ax( vec a x( vec ax vec b))))) is equal to 64 vec a (b) 64 vec b (c) -64 vec b (d) -64 vec a

Let vec a and vec b be two non-zero perpendicular vectors.A vecrtor vec r satisfying the equation vec r xxvec b=vec a can be vec b-(vec a xxvec b)/(|vec b|^(2)) b.2vec b-(vec a xxvec b)/(|vec b|^(2)) c.|vec a|vec b-(vec a xxvec b)/(|vec b|^(2))d|vec b|vec b-(vec a xxvec b)/(|vec b|^(2))

Find |vec a| and |vec b|, if :(vec a+vec b)vec a-vec b=12 and |vec a|=2|vec b|

If vec a and vec b are orthogonal unit vectors, then for a vector vec r noncoplanar with vec a and vec b , vector rxxa is equal to a. [ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a) b. [ vec r vec a vec b]( vec a+ vec b) c. [ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b d. none of these

Show that ( vec axx vec b)^2=| vec a|^2| vec b|^2-( vec adot vec b)^2=| [vec a.vec a, vec a.vec b],[ vec a.vec b, vec b.vec b]|